

The Chinese University of Hong Kong, Shenzhei

Problem and Contribution

Goal: Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this work, we present a novel end-to-end network for robust point clouds processing, which can deal with point clouds with noise effectively.

Key Contributions:

- We propose an end-to-end model for robust point clouds processing, PointASNL, which can effectively ease the influence of outliers or noise.
- With the proposed adaptive sampling (AS) module, PointASNL can adaptively adjust the coordinates of the initial sampled points, making them more suitable for feature learning with intrinsic geometry and more robust for noisy outliers.
- We further design a point nonlocal cell in the proposed local-nonlocal (L-NL) module, which enhances the feature learning in point local cells.

Method

Proposed Components:

In this paper, we propose two modules in PointASNL, namely adaptive sampling (AS) module in Part (a) and local-nonlocal (L-NL) module in Part (b).

- AS module updates group features by using self-attention within all group members. Then, it outputs normalized weights for each coordinate axis and features and adaptively shifts both coordinate and features of the sampled point.
- Within L-NL module, there are two cells: point local (PL) cell and point nonlocal (PNL) cell. Specifically, the PL cell can be any appealing algorithms (e.g., PointNet++, Point-Conv), and the PNL cell innovatively considers the long distance dependency between sampled points and the entire point cloud.

PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling

Xu Yan^{1,2}, Chaoda Zheng^{2,3}, Zhen Li^{1,2}, Sheng Wang⁴, Shuguang Cui^{1,2} ¹ The Chinese University of Hong Kong, Shenzhen, ² Shenzhen Research Institute of Big Data

³South China University of Technology, ⁴Tencent AI Lab

(b)

Experiments & Results

Inner structure of point nonlocal (PNL) cell and architecture.

(b) Architecture of PointASNL

Table	1:	O	ve
datase	ets.	"p	nt
"nor"	sta	nds	fo

Method	input	#points	<i>M40</i>
PointNet	pnt	1k	89.2
PointNet++	pnt, nor	$5\mathrm{k}$	91.9
PointCNN	pnt	$1\mathrm{k}$	92.2
DGCNN	pnt	$1\mathrm{k}$	92.2
PointConv	pnt, nor	$1\mathrm{k}$	92.5
KPConv	pnt	$7\mathrm{k}$	92.9
PointASNL	pnt	1k	92.9
PointASNL	pnt, nor	1k	93.2

Table 2: Segmentation results on indoor S3DIS, Scan-Net and SemanticKITTI datasets in mean per-class IoU (mIoU,%).

Method	S3DIS	ScanNet	SemKitti			
methods use unspecific number of points as input						
TangentConv	52.8	40.9	40.9			
SPGraph	62.1	-	17.4			
KPConv	70.6	68.4	-			
methods use fixed number of points as input						
PointNet++	53.4	33.9	20.1			
DGCNN	56.1	-	_			
PointCNN	65.4	45.8	_			
PointConv	-	55.6	-			
HPEIN	67.8	61.8	_			
PointASNL	68.7	63.0	46.8			

Scan the Qr-Code: **Github & Preprint & Contact Us**

erall accuracy on ModelNet40 (M40) t" stands for coordinates of point and or normal vector.

Visualization results on S3DIS datset.

