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Problem and Contributions

Motivation: For a single frame point cloud (a) with extremely sparse points, it seems 1m-
possible for previous methods to conduct accurate segmentation. Nevertheless, such seg-
mentation would be possible, if we introduce the richer shape information from the other

Implementation & Results

Inner structure of Semantic Scene Completion (SSC) module and Point-Voxel
Interaction (PVI) module.
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designed 1n cascaded and disposable manners, and a novel point-voxel interaction (PVI)

module is proposed for better feature interaction and fusion between the two tasks. Ll : e Method precision  recall IoU | mloU
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roposed Framework: TN
We propose an enhanced Joint single sweep LiIDAR point cloud Semantic Segmentation by R Fgoms Top-10 mIoU gains between JS3C-Net and split-

exploiting learned shape prior form Scene Completion Network, i.e., JS3C-Net.

e We firstly use the general appealing point cloud segmentation network to obtain initial
point semantic segmentation.

e The SSC module takes results of segmentation network as input and generates the com-

pleted voxel of the whole scene with dense convolution neural network.

e The Point-Voxel Interaction (PVI) module 1s proposed to conduct shape-aware knowledge
transfer.

Note that SSC module and PVI module can be discarded during inference to prevent intro-
ducing computing burden for segmentation.
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Qualitative results of the Semantic Scene Completion (SSC) task on Se-
manticKITTI dataset. Red circles show that our method performs better in many
details than recent state-of-the-art.
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trained single task (SS or SSC) on the SemanticKITTI
dataset.
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